Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(12): 6370-6388, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158240

RESUMEN

Cells survive harsh environmental conditions by potently upregulating molecular chaperones such as heat shock proteins (HSPs), particularly the inducible members of the HSP70 family. The life cycle of HSP70 mRNA in the cytoplasm is unique-it is translated during stress when most cellular mRNA translation is repressed and rapidly degraded upon recovery. Contrary to its 5' untranslated region's role in maximizing translation, we discovered that the HSP70 coding sequence (CDS) suppresses its translation via the ribosome quality control (RQC) mechanism. The CDS of the most inducible Saccharomyces cerevisiae HSP70 gene, SSA4, is uniquely enriched with low-frequency codons that promote ribosome stalling during heat stress. Stalled ribosomes are recognized by the RQC components Asc1p and Hel2p and two novel RQC components, the ribosomal proteins Rps28Ap and Rps19Bp. Surprisingly, RQC does not signal SSA4 mRNA degradation via No-Go-Decay. Instead, Asc1p destabilizes SSA4 mRNA during recovery from heat stress by a mechanism independent of ribosome binding and SSA4 codon optimality. Therefore, Asc1p operates in two pathways that converge to regulate the SSA4 mRNA life cycle during stress and recovery. Our research identifies Asc1p as a critical regulator of the stress response and RQC as the mechanism tuning HSP70 synthesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Codón/metabolismo , Biosíntesis de Proteínas
2.
Methods Mol Biol ; 2515: 237-254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776356

RESUMEN

Neurodegenerative disorders (NDs) are diverse age-related conditions also described as "conformational diseases." The hallmark of NDs is the accumulation of disease-specific proteins as toxic misfolded aggregates in some areas of the brain. They lead to the loss of protein homeostasis (proteostasis) that causes neuronal dysfunction and death. A potential therapeutic strategy for NDs is to prevent the accumulation of misfolded proteins by activating the heat shock response (HSR). The HSR maintains proteostasis through the upregulation of heat shock proteins (HSPs), molecular chaperones that recognize misfolded proteins, and either refold them to their functional conformations and/or target them for degradation. However, how to manipulate the expression of HSPs to obtain a therapeutic effect in neurons remains unclear. Furthermore, the regulation of the HSR in neurons is more complex than what we have learned from culturing somatic nonneuronal cells. This chapter describes a method to investigate the induction of HSP70 in primary hippocampal neurons using single-molecule fluorescence in situ hybridization (smFISH). Quantification of smFISH provides the means to analyze neuron-to-neuron variability in the activation of the HSR and enables us to study the transcriptional induction and localization of HSP70 mRNA in primary neurons. This information might be critical to find the druggable steps for developing effective therapies to treat age-related NDs.


Asunto(s)
Proteínas de Choque Térmico , Enfermedades Neurodegenerativas , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Humanos , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
3.
J Biol Chem ; 298(5): 101796, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248532

RESUMEN

All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.


Asunto(s)
Proteínas de Choque Térmico , Proteostasis , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...